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One of the problems often attributed to the classical electron is that energy and 
linear momentum do not transform as components of a 4-vector under Lorentz 
transformations. It is shown (with the example of an uncharged balloon) that 
this problem is not unique to the classical electron with its electromagnetic field 
extending to spatial infinity. For the balloon model and the classical electron iV 
is shown that the cohesive surface stress makes a contribution to the energy and 
momentum in such a way that they transform as 4-vector components. From 
these and other considerations it is shown that the classical electron may be 
treated in a self-consistent manner. 

1. I N T R O D U C T I O N  

In fiat space- t ime  the energy and  l inear  m o m e n t u m  o f  an i so la ted  
n o n - q u a n t u m  mechan ica l  system should  t r ans fo rm as c ompone n t s  o f  a 
4-vector.  In  add i t ion ,  for  such a system to be in equi l ib r ium,  it is necessary  
tha t  the  in te rna l  forces and  stresses wi th in  the b o d y  be ba lanced .  

In  this  p a p e r  we invest igate  two systems which  involve spher ica l  shell  
mass  d is t r ibu t ions .  We show that  the inc lus ion  o f  cohesive surface  forces  
to give equ i l ib r ium leads  na tura l ly  to the resul t  that  the  energy and  l inear  
m o m e n t u m  t r ans fo rm as componen t s  o f  a 4-vector.  This resul t  is o f  impor t -  
ance in our  d i scuss ion  o f  the  classical  e lec t ron  (Sect ion 4), s ince one o f  the 
p rob l ems  of ten  a t t r ibu ted  (Leighton,  1959) to mode l s  o f  the c lass ical  e lec t ron  
is that  the  energy and  l inear  m o m e n t u m  do not  t r ans fo rm as c o m p o n e n t s  
o f  a 4-vector  u n d e r  Lorentz  t rans format ions .  In  par t i cu la r ,  we discuss our  
results  for  the  example  o f  a charged  mass  shell  (Sect ion 4) in re la t ion  to 
the  A b r a h a m  (1905) -Loren tz  (1909)-Poincar6  (1906) c lass ical  m o d e l  for  
the e lectron.  Fu r the rmore ,  we compare  ou r  results  with those  o f  o ther  
au thors  (Kwal ,  1949 Rohr l i ch ,  1960; Fermi ,  1922); we resolve the  e lec t ron  

XPhysics Department, University of Pennsylvania, Philadelphia, Pennsylvania 19104. 
717 

0020-7748/86/0700-0717505.00/0 �9 1986 Plenum Publishing Corporation 



718 Cohen and Mustafa 

self-energy problem, i.e., the energy and linear momentum remain finite in 
the point particle limit. 

For completeness, we show in an Appendix that the models of Sections 
3 and 4, together with the Poincar6 classical electron, may be viewed as 
limiting cases of a more general system. 

2. ENERGY-MOMENTUM AND CONSERVED QUANTITIES 

Before proceeding with the details of our examples, we review (Cohen, 
1968) the derivation of the expression for conserved quantities (such as the 
energy and linear momentum) generated by a non-quantum mechanical 
system. Use of  this expression will be made in the following section. (The 
results obtained here are valid in general relativity and in the classical limit.) 

In curvilinear coordinates, the conservation law 
kLv 

T ;~ = 0 (1) 

yields conserved quantities for systems with symmetries (semicolon denotes 
covariant differentiation, which makes allowance for possible motion of  the 
basis vectors). Symmetry-preserving transformations of the system are gener- 
ated by Killing vectors ~, with components ~,, satisfying the equation 
~;~ + ~;~, = 0. Contracting the conservation law (1) with the Killing vector 
~: yields 

k~v p .v  /~v /xv  ~ T  ; ~ = ( ~ T  ) ; ~ - ~ ; ~ r  =(~:~,T );~ (2) 

because of the symmetry of T ~ and the antisymmetry of ~:~;~. Integrating 
over all space-time or and applying the n-dimensional form (Synge, 1960) 
of Stokes' theorem yields 

I - fo 0 = ( ~ T ) , ~  dV4 = ~ T  '~  do'~ (3) 
o" o- 

where ao- denotes the boundary of or. For sources that are bounded in space 
or fall off sufficiently rapidly at spatial infinity (as is the case for electro- 
magnetic sources), equation (3) becomes the difference of two integrals 
evaluated over spacelike surfaces of constant time. Since this difference 
vanishes, the integral evaluated at constant time is independent of the spatial 
surface. Therefore the quantity 

! = f ~:~T ~~ do" 0 (4) 
d t - c o n s t  

is conserved, where do-o is the volume element in 3-space. 
In flat space-time using Cartesian coordinates (x ~ = t, x 1 = x, x 2 = y, x 3 = z) 

the Killing vector associated with stationarity is ~ = at (i.e., ~:o = 1). Thus, 
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the total energy E, the conserved quantity associated with time translation 
invariance, is 

E = ~ T OO dtro (5) 
.J t - c o n s t  

Similarly, the conserved quantity associated with space translation invari- 
ance, (e.g., in the z direction and generated by ~: = 0z) is the linear momentum 

pz = ( T 3~ dcro (6) 
t - c o n s t  

3.  B A L L O O N  M O D E L  

The system considered here consists of  a gas-filled balloon moving 
with velocity v along the z axis with respect to a laboratory frame of 
reference L'. The balloon is a sphere of  radius ro in its rest frame L. The 
mass distribution in the infinitesimally thin surface of  the balloon is specified 
by 

P s u r f  = m ~ ( r -  ro) (7) 

where S dar6(  r -  to) = 1. The pressure P and gas density p are taken to be 
uniform within the bal loon's  interior. 

The outward-acting pressure is balanced by a surface tension (tangential 
stress in the surface of  the balloon) given by 

S~ = S S ( r -  ro) (8) 

It can be shown (e.g., by a free body diagram) that equilibrium requires 

S = -21rr3p (9) 

The stress-energy tensor may be written as 

T~"=(Psurf+p)U,~U"+p(u,~u~'+rl ,~")  ~" + Tcohe s (10) 

where U ~ is the 4-velocity of  the balloon and ~ = d iag( -1 ,  1, 1, 1). (It  
may be of interest to note that the tensor U"  U ~ + r/"~ projects any 4-vector 
onto the space perpendicular  to U~.) With respect to spherical coordinates 
(x ~ = t, x I = ~, x 2 = r~, x 3 = r sin 0 ,~) in L one observes that 

~ v  
Tcolaes = S ~ ( ~ +  ~ 3 )  (11) 

In order to calculate the energy and linear momentum of the system 
in the laboratory frame L' as well as the rest frame L, one could evaluate 
the relevant components  of  equation (10) in L'; to make use of  the 
expressions for energy and linear momentum [equations (5) and (6)] T "~ 
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shall be expressed in Cartesian coordinates. The first terms on the rhs of 
(10) can be transformed using the properties: U" is a 4-vector, and ~7 ~" is 
the same in all frames. In L', U ~ = 3,(1, 0, 0, v) with respect to Cartesian 
coordinates, where 7 = - ( 1 - v 2 )  -~/z. Denoting the sum of all but the last 
term on the rhs of (10) by ~ Tmatter , o n e  obtains 

TOOtter = 2 (  Psurfq- P) -t- P(T  2 - 1) 
(12) 

03 2 
Trnatte r -~- y /)( psurf+ P + p) 

Before proceeding with the evaluation of the integral expressions (5) and 
(6) for the energy and z momentum, it should be noted that these integrals 
are more conveniently evaluated with respect to coordinates in the rest 
frame rather than the laboratory frame. In terms of the unprimed coordinates 
in L, (5) and (6) may be rewritten 

E : 7 -1  f T OO dcrc (13) 
3 t-const 

= "y-~ f T O3 do" L (14) pz 
3 t-const 

where the volume elements in L and L' are related by dcrL = y do'L,. If  the 
contributions to the total energy and linear momentum (in the laboratory 
frame) that involve "~ z Trnatter a r e  called Ematter and Prnatter, respectively, 
equations (12)-(14) yield 

Ematter = y(m+ m'+4~'r3~ p/)2) 

(15) 
P~aatter = y v ( m + m ' + ~  ~- P) 

where y2_ 1 = 72v 2 has been used, and ' 4 3 m =g~rrop is the rest mass of the 
interior gas. It is apparent from (15) that Ematter and PZat t e  r do not by 
themselves constitute a 4-vector. Since one expects the total energy and 
linear momentum of the system to form a 4-vector, there should be additional 
contributions to the energy and momentum. In this model these contribu- 
tions (denoted by Ecolaes and P~oh~s) arise from the cohesive stress. 

In order to transform ~ T~oh~ (and thus evaluate E~oh~ and Pcoh~ in L'), 
one forms the tensor 

Tcolaes = T.~oh~s to"| ~ (16) 

where the ~o ~ form a basis of one-forms and | is the Cartesian product. 
In L we choose a basis of spherical one-forms, w ~  o~ ~= dr, w 2= rdO, 
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oJ 3= r sin OdO. From equations (11) and (16) we find 

Tcoh~s = S~ (toE@ 0)2+ to3@ 0,)3) (17) 

In L, to~ and o93 may be expressed in terms of Cartesian one-forms as follows: 

toe = COS 0 COS ~b dx + cos 0 sin ~b dy - sin 0 dz 
(18) 

to3 = cos ~ d y - s i n  6 d x  

To transform to the laboratory frame L', we make use of  the Lorentz 
transformation 

dt = y( d t ' -  v dz') 

dx = dx' 

d y = d y '  (19) 

dz = y ( d z ' -  v dt') 

where pr imed coordinates are those used in L'. 
From equations (18) and (19) we find 

2 to = cos 0 cos ~b d x ' +  cos 0 sin ~b d y ' -  3' sin 0 ( d z ' -  v dt') 
(20) 

to3 = cos ~b dy' - sin ~b dx' 

F rom equations (16), (17) and (20) and using a basis of  Cartesian one-forms 
dx ~'' in L', we identify 

O0 03 Tcohes = T EvE sin E 0 S~, (21) Tcohe s = 'y2D sin E 0 S~ 

in the laboratory frame. Equations (13), (14), and (21) give 

2 2 z = ~ y v S  (22) Eeohe s = 5 3//) S, Pcohes 

As above for Ematter and P~att~r, Ecohes and P~oh~s do not transform 
individually as components of  a 4-vector. The total energy E and linear 
momentum pz  are found by adding the two contributions (15) and (22). 
One obtains 

E = y ( m  + m') = y M  
(23) 

pz  = y ( m  + m' )v  = y M v  

where m + m'  represents the total rest mass M of the system. The terms in 
P and S in (15) and (22) cancel when added because of  equation (9). For 
translation in the z direction, pz is the only nonzero component  of  linear 
momentum. It is then clear from (23) that the total energy E and linear 
momentum pz transform as components o f  a 4-vector, as hoped. It is 
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interesting to note that the requirement that the system be in equilibrium 
is sufficient to ensure that the energy and linear momentum transform as 
components of a 4-vector. 

The balloon model is of importance since it provides an example of a 
completely mechanical system for which the noncohesive contributions 
to the energy and linear momentum do not by themselves constitute a 
4-vector. The same problem arises in models of the classical electron 
(Section 4), and might be attributed falsely to the infinite spatial extent of 
the electromagnetic fields. The balloon model (with no charge, and hence 
no electromagnetic fields) demonstrates that the nature of these fields is 
not the cause of the problem. 

4. THE CLASSICAL ELECTRON 

Historically, the electron was first thought of as a rigid, charged sphere 
of small but nonzero radius. This classical model was introduced by 
Abraham (1905) and developed by Abraham and Lorentz (1909) in the 
early part of this century. The Lorentz shell model has the drawback that 
the electromagnetic forces that tend to explode the electron are not balanced 
or compensated. In addition, the energy and linear momentum do not 
transform as components of a 4-vector (Rohrlich, 1960; Pais, 1948). Poincar6 
(1906) attempted to resolve these problems by postulating the existence of 
a nonelectromagnetic cohesive force (Poincar~ stress) within the electron. 
This took the form of a negative pressure in the electron's interior. For a 
system with density p and pressure P, the nonelectromagnetic contributions 
Bergmann (1942) to T "~ are pU~" U ~" + P (  U "  U " + rl'~'). Poincarr, however, 
omitted the P U ~ ' U  " term. This may have led others to remark that the 
nature and transformation properties of the Poincar6 stress are not well 
formulated (Leighton, 1949). In addition, all these models retain the problem 
of an infinite electromagnetic self-energy in the limit of a (zero-radius) point 
particle. 

In this section we present a shell model for the classical electron which 
removes the above difficulties encountered by earlier models. 

Consider a system consisting of a uniformly charged shell of charge q 
and total mass m (with q >> m in dimensionless units) moving with velocity 
v along the z axis in the laboratory frame L'. As before (Section 3), the 
shell is a sphere of radius ro in the rest frame L. 

The matter distribution is most conveniently described in L. It is 

p = KS( r -  to) (24) 

where K depends on q, rn, and to. 



Energy-Momentum Vector of the Classical Electron 723 

The stress-energy tensor of such a system is 

T ~ " =  p U U U "  + 4 ~  ( F~F~'~-�88 ) + Tcohe s/~'  (25) 

where g~'~= diag(-1,  1, 1, 1) in Cartesian or spherical coordinates, F ~'~ is 
the Maxwell tensor, and U ~' is the 4-velocity of the shell. ~'~ Tcohe s represents 
a tangential cohesive surface stress in the shell which balances the electro- 
magnetic repulsion within the shell. Thus, the surface stress, as in the 

Tcohes is given by (8) and (11) of Section previous example, acts as a glue. ~ 
3, with equilibrium of the internal cohesive and repulsive forces requiring 

q2 
S = (26) 

4to 

for q >> m. 
The first two terms on the rhs of equation (25) are identified as the 

contributions of the matter density and the electromagnetic field (Wheeler, 
1962), respectively, to T ~'~. We may thus write 

T ~  _ tr~tT ~ 
matter  - -  P ~  v (27) 

It is instructive to calculate the individual contributions of the matter 
density, em field, and cohesive stress to the total energy-momentum 4-vector 
(evaluated in the laboratory frame). We show that although the individual 
contributions from the em field and cohesive stress to the total energy- 
momentum are not themselves 4-vectors, the sum of all contributions is a 
4-vector. 

If  one considers only the contribution of  T~matter to T "~ and denotes 
the corresponding contributions to the total energy and linear momentum 
in L' by Ematter and PZatter, respectively, one finds 

E m a t t e r  = "yK (28) 

P m a t t e r  --'~ ] / K ~  

where use has been made of equations (13), (14), (24), and (27). One 
observes from (28) that E,~tt~ and PZ,tt~r form a 4-vector. Integration of  
the mass equation din~dr = 4~rr2T ~176 gives the following expression for K to 
first order in v: 

q2 
K = m - - -  (29) 

2to 
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The components of  T ~  in L' may be found in a manner analogous to 
that used in Section 3 for ~'~ �9 T~oh,,. One first calculates in the rest frame L 
the tensor 

F = l  F ~ t o ~  |  ~ (30) 

Using equations (20) and (30), one may identify F ~  (and therefore T ~'~) 
in L'. Denoting the contributions to the total energy and linear momentum 
in L' by Eem and PZm, respectively, one obtains [using (13) and (14)] the 
well-known results (Leighton, 1959) 1 

em 2 ro 

p z  m = 2 y q  2 v 

3to 

(31) 

It is clear from the above that Eem and PZm do not form components of a 
4-vector. To circumvent this difficulty, some authors (Kwal, 1949; Rohlich, 
1960; Jackson, 1975) have modified the definitions of the total energy and 
linear momentum [equations (5) and (6)] in such a way that Eem and PeZm 
transform as components of a 4-vector. [This may be achieved (Kwal, 1949; 
Rohrlich, 1960; Jackson, 1975), for example, by the introduction of a 
covariant element of 4-volume do-".] Not only are such changes in the 
definitions somewhat arbitrary, but they are also unnecessary: Physically, 
what is required is that the total energy and linear momentum of a system 
form a 4-vector. This may be achieved using the standard definitions of 
energy and linear momentum adopted here, as we show below. 

As before (Section 3), the relevant components of "~ Tcohes are given by 
(21), where equations (8) and (26) specify S~. The contributions of "~ Tcohes 

to the energy Ecohe~ and linear momentum P~ohes are 

Eeohe s = - -  ~q2"1.)2/6 ro 

P~ohes = -- y q  E v / 6ro 
(32) 

From (32) it can be seen that Eeohe s and PZohes do not make up the timelike 
and spacelike components of a 4-vector. Adding the rhs of (31) to the rhs 
of (32) yields 

Eem + Ecohes = 3'q 2/2 ro 

P~m + PZohes = TqEv /2ro  
(33) 

1Note that yqZ/2ro is commonly referred to as the self-energy (of the em field). 
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From (31) one observes that the sum of the cohesive stress energy- 
momentum and the em energy-momentum constitute a 4-vector, as men- 
tioned above. 

The total energy E and linear momentum p z  are found by adding the 
three contributions (28), (31), and (32). One obtains 

E = y m  (34) 
p z  = T m  v 

where use has been made of (29). From (34) it is manifest that (E, pz) 
constitutes a 4-vector. Further, the self-energy of the em field does not 
appear in this final expression. Thus, the point-particle limit may be taken 
without incurring either an infinite total energy or linear momentum. 

5. CONCLUDING REMARKS 

There are systems which reqire the existence of cohesive stresses for 
equilibrium. These stresses contribute to the energy and linear momentum 
in such a way that the total energy-momentum is a 4-vector. Our definitions 
of energy and linear momentum are the standard ones. 

We have also discussed the classical electron, modeled as a charged 
mass shell. A surface stress holds the electron in equilibrium and contributes 
to the total energy and linear momentum such that they transform as 
components of  a 4-vector. These features were absent from the original 
Abraham-Lorentz model for the electron. Poincar~ was only partially suc- 
cessful in incorporating these features in his model for the electron (see 
above). Moreover, the electron self-energy diverges in the point-particle 
limit for the Poincar~ model. Our treatment of the electron does not have 
this problem, since the total energy is finite and independent of the electron 
radius. Thus, we have shown that it is possible to treat the classical electron 
in a self-consistent manner. 

These examples illustrate the importance of including all contributions 
of  the stress-energy tensor when considering the equilibrium and Lorentz 
transformation properties of classical bodies. When this is done, the energy 
and linear momentum naturally constitute components of a 4-vector. 

APPENDIX: THE CHARGED BALLOON 

The systems described in Sections 3 and 4, together with the Poincar6 
classical electron, are each special cases of a more general system: a charged 
balloon supported by a cohesive surface stress and /or  an interior pressure. 
Using the notation adopted in Sections 3 and 4 and adding contributions 
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from (15), (22), and (31), one finds that the total energy and linear momen-  
tum of the system are 

E = 3, M+ 4~rr3oP + 2S + 
(A1) 

PZ = 3'[ M +~( 47rr3oP + 2S +~ro) ] V 

where the total mass M is found (from the mass equation) to be 

M=K+4~r~p ~ q2 
(A2) 

3 2to 

to first order in v. 
I f  the condition that the body be in equilibrium, 

7rr3p + 2S + 2~o = 0 (A3) 4 

is met, one observes from (A1) that the energy and linear momentum 
constitute a 4-vector. One sees that for the case q = 0, (A3) reduces to (9), 
(A1) reduces to (23), and the balloon model is recovered. Similarly, for the 
case P = 0, (A3) reduces to (26), (A1) reduces to (34) (if p = 0), and the 
model of  a charged mass shell is recovered. In the absence of a cohesive 
surface stress (S = 0), (A3) reduces to 

P = -q2/S~r4 (A4) 

It may be seen from (A4) that if S = 0, the shell can be supported by 
a negative internal pressure, as Poincar6 at tempted to show (cf. Section 4 
for further discussion). 
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